extension | φ:Q→Aut N | d | ρ | Label | ID |
C23.1(C3:D4) = C3:C2wrC4 | φ: C3:D4/C3 → D4 ⊆ Aut C23 | 24 | 8+ | C2^3.1(C3:D4) | 192,30 |
C23.2(C3:D4) = (C2xD4).D6 | φ: C3:D4/C3 → D4 ⊆ Aut C23 | 48 | 8- | C2^3.2(C3:D4) | 192,31 |
C23.3(C3:D4) = C23.D12 | φ: C3:D4/C3 → D4 ⊆ Aut C23 | 48 | 8- | C2^3.3(C3:D4) | 192,32 |
C23.4(C3:D4) = C23.2D12 | φ: C3:D4/C3 → D4 ⊆ Aut C23 | 24 | 8+ | C2^3.4(C3:D4) | 192,33 |
C23.5(C3:D4) = C24:5Dic3 | φ: C3:D4/C3 → D4 ⊆ Aut C23 | 24 | 4 | C2^3.5(C3:D4) | 192,95 |
C23.6(C3:D4) = (C22xC12):C4 | φ: C3:D4/C3 → D4 ⊆ Aut C23 | 48 | 4 | C2^3.6(C3:D4) | 192,98 |
C23.7(C3:D4) = C42:4Dic3 | φ: C3:D4/C3 → D4 ⊆ Aut C23 | 48 | 4 | C2^3.7(C3:D4) | 192,100 |
C23.8(C3:D4) = C42:5Dic3 | φ: C3:D4/C3 → D4 ⊆ Aut C23 | 24 | 4 | C2^3.8(C3:D4) | 192,104 |
C23.9(C3:D4) = C22:C4:D6 | φ: C3:D4/C3 → D4 ⊆ Aut C23 | 48 | 4 | C2^3.9(C3:D4) | 192,612 |
C23.10(C3:D4) = C42:7D6 | φ: C3:D4/C3 → D4 ⊆ Aut C23 | 48 | 4 | C2^3.10(C3:D4) | 192,620 |
C23.11(C3:D4) = C42:8D6 | φ: C3:D4/C3 → D4 ⊆ Aut C23 | 24 | 4 | C2^3.11(C3:D4) | 192,636 |
C23.12(C3:D4) = 2+ 1+4:6S3 | φ: C3:D4/C3 → D4 ⊆ Aut C23 | 24 | 8+ | C2^3.12(C3:D4) | 192,800 |
C23.13(C3:D4) = 2+ 1+4.4S3 | φ: C3:D4/C3 → D4 ⊆ Aut C23 | 48 | 8- | C2^3.13(C3:D4) | 192,801 |
C23.14(C3:D4) = 2+ 1+4.5S3 | φ: C3:D4/C3 → D4 ⊆ Aut C23 | 48 | 8- | C2^3.14(C3:D4) | 192,802 |
C23.15(C3:D4) = C24.3D6 | φ: C3:D4/C22 → S3 ⊆ Aut C23 | 48 | | C2^3.15(C3:D4) | 192,970 |
C23.16(C3:D4) = C24.5D6 | φ: C3:D4/C22 → S3 ⊆ Aut C23 | 24 | | C2^3.16(C3:D4) | 192,972 |
C23.17(C3:D4) = A4:SD16 | φ: C3:D4/C22 → S3 ⊆ Aut C23 | 24 | 6 | C2^3.17(C3:D4) | 192,973 |
C23.18(C3:D4) = D4:S4 | φ: C3:D4/C22 → S3 ⊆ Aut C23 | 24 | 6+ | C2^3.18(C3:D4) | 192,974 |
C23.19(C3:D4) = A4:2Q16 | φ: C3:D4/C22 → S3 ⊆ Aut C23 | 48 | 6- | C2^3.19(C3:D4) | 192,975 |
C23.20(C3:D4) = Q8:3S4 | φ: C3:D4/C22 → S3 ⊆ Aut C23 | 24 | 6 | C2^3.20(C3:D4) | 192,976 |
C23.21(C3:D4) = C25.S3 | φ: C3:D4/C22 → S3 ⊆ Aut C23 | 24 | | C2^3.21(C3:D4) | 192,991 |
C23.22(C3:D4) = C24.13D6 | φ: C3:D4/C6 → C22 ⊆ Aut C23 | 48 | | C2^3.22(C3:D4) | 192,86 |
C23.23(C3:D4) = C42:3Dic3 | φ: C3:D4/C6 → C22 ⊆ Aut C23 | 48 | 4 | C2^3.23(C3:D4) | 192,90 |
C23.24(C3:D4) = C24.20D6 | φ: C3:D4/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.24(C3:D4) | 192,511 |
C23.25(C3:D4) = C24.25D6 | φ: C3:D4/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.25(C3:D4) | 192,518 |
C23.26(C3:D4) = C4:C4.233D6 | φ: C3:D4/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.26(C3:D4) | 192,555 |
C23.27(C3:D4) = C4:C4.236D6 | φ: C3:D4/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.27(C3:D4) | 192,562 |
C23.28(C3:D4) = C42:6D6 | φ: C3:D4/C6 → C22 ⊆ Aut C23 | 48 | 4 | C2^3.28(C3:D4) | 192,564 |
C23.29(C3:D4) = C6.Q16:C2 | φ: C3:D4/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.29(C3:D4) | 192,594 |
C23.30(C3:D4) = D12:17D4 | φ: C3:D4/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.30(C3:D4) | 192,596 |
C23.31(C3:D4) = C4:D4:S3 | φ: C3:D4/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.31(C3:D4) | 192,598 |
C23.32(C3:D4) = C3:C8:5D4 | φ: C3:D4/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.32(C3:D4) | 192,601 |
C23.33(C3:D4) = (C2xQ8).51D6 | φ: C3:D4/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.33(C3:D4) | 192,604 |
C23.34(C3:D4) = D12.37D4 | φ: C3:D4/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.34(C3:D4) | 192,606 |
C23.35(C3:D4) = C3:C8:6D4 | φ: C3:D4/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.35(C3:D4) | 192,608 |
C23.36(C3:D4) = C3:C8.6D4 | φ: C3:D4/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.36(C3:D4) | 192,611 |
C23.37(C3:D4) = C24.31D6 | φ: C3:D4/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.37(C3:D4) | 192,781 |
C23.38(C3:D4) = (C6xD4):9C4 | φ: C3:D4/C6 → C22 ⊆ Aut C23 | 48 | 4 | C2^3.38(C3:D4) | 192,795 |
C23.39(C3:D4) = (C3xD4):14D4 | φ: C3:D4/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.39(C3:D4) | 192,797 |
C23.40(C3:D4) = (C3xD4).32D4 | φ: C3:D4/C6 → C22 ⊆ Aut C23 | 96 | | C2^3.40(C3:D4) | 192,798 |
C23.41(C3:D4) = C12.C24 | φ: C3:D4/C6 → C22 ⊆ Aut C23 | 48 | 4 | C2^3.41(C3:D4) | 192,1381 |
C23.42(C3:D4) = C24.55D6 | φ: C3:D4/Dic3 → C2 ⊆ Aut C23 | 96 | | C2^3.42(C3:D4) | 192,501 |
C23.43(C3:D4) = C24.60D6 | φ: C3:D4/Dic3 → C2 ⊆ Aut C23 | 96 | | C2^3.43(C3:D4) | 192,517 |
C23.44(C3:D4) = C4:C4.234D6 | φ: C3:D4/Dic3 → C2 ⊆ Aut C23 | 96 | | C2^3.44(C3:D4) | 192,557 |
C23.45(C3:D4) = C4.(C2xD12) | φ: C3:D4/Dic3 → C2 ⊆ Aut C23 | 96 | | C2^3.45(C3:D4) | 192,561 |
C23.46(C3:D4) = C3:C8:22D4 | φ: C3:D4/Dic3 → C2 ⊆ Aut C23 | 96 | | C2^3.46(C3:D4) | 192,597 |
C23.47(C3:D4) = C3:C8:23D4 | φ: C3:D4/Dic3 → C2 ⊆ Aut C23 | 96 | | C2^3.47(C3:D4) | 192,600 |
C23.48(C3:D4) = C3:C8:24D4 | φ: C3:D4/Dic3 → C2 ⊆ Aut C23 | 96 | | C2^3.48(C3:D4) | 192,607 |
C23.49(C3:D4) = C3:C8.29D4 | φ: C3:D4/Dic3 → C2 ⊆ Aut C23 | 96 | | C2^3.49(C3:D4) | 192,610 |
C23.50(C3:D4) = C24.29D6 | φ: C3:D4/Dic3 → C2 ⊆ Aut C23 | 96 | | C2^3.50(C3:D4) | 192,779 |
C23.51(C3:D4) = C4oD4:4Dic3 | φ: C3:D4/Dic3 → C2 ⊆ Aut C23 | 96 | | C2^3.51(C3:D4) | 192,792 |
C23.52(C3:D4) = C2xQ8.13D6 | φ: C3:D4/Dic3 → C2 ⊆ Aut C23 | 96 | | C2^3.52(C3:D4) | 192,1380 |
C23.53(C3:D4) = C24.12D6 | φ: C3:D4/D6 → C2 ⊆ Aut C23 | 48 | | C2^3.53(C3:D4) | 192,85 |
C23.54(C3:D4) = C12.2C42 | φ: C3:D4/D6 → C2 ⊆ Aut C23 | 48 | | C2^3.54(C3:D4) | 192,91 |
C23.55(C3:D4) = (C6xD4):C4 | φ: C3:D4/D6 → C2 ⊆ Aut C23 | 48 | | C2^3.55(C3:D4) | 192,96 |
C23.56(C3:D4) = (C6xQ8):C4 | φ: C3:D4/D6 → C2 ⊆ Aut C23 | 48 | | C2^3.56(C3:D4) | 192,97 |
C23.57(C3:D4) = C24.56D6 | φ: C3:D4/D6 → C2 ⊆ Aut C23 | 96 | | C2^3.57(C3:D4) | 192,502 |
C23.58(C3:D4) = C24.57D6 | φ: C3:D4/D6 → C2 ⊆ Aut C23 | 96 | | C2^3.58(C3:D4) | 192,505 |
C23.59(C3:D4) = C24.59D6 | φ: C3:D4/D6 → C2 ⊆ Aut C23 | 48 | | C2^3.59(C3:D4) | 192,514 |
C23.60(C3:D4) = C4:C4.232D6 | φ: C3:D4/D6 → C2 ⊆ Aut C23 | 96 | | C2^3.60(C3:D4) | 192,554 |
C23.61(C3:D4) = C4:C4:36D6 | φ: C3:D4/D6 → C2 ⊆ Aut C23 | 48 | | C2^3.61(C3:D4) | 192,560 |
C23.62(C3:D4) = C4:C4.237D6 | φ: C3:D4/D6 → C2 ⊆ Aut C23 | 96 | | C2^3.62(C3:D4) | 192,563 |
C23.63(C3:D4) = (C2xC6).D8 | φ: C3:D4/D6 → C2 ⊆ Aut C23 | 96 | | C2^3.63(C3:D4) | 192,592 |
C23.64(C3:D4) = C4:D4.S3 | φ: C3:D4/D6 → C2 ⊆ Aut C23 | 96 | | C2^3.64(C3:D4) | 192,593 |
C23.65(C3:D4) = D12:16D4 | φ: C3:D4/D6 → C2 ⊆ Aut C23 | 48 | | C2^3.65(C3:D4) | 192,595 |
C23.66(C3:D4) = Dic6:17D4 | φ: C3:D4/D6 → C2 ⊆ Aut C23 | 96 | | C2^3.66(C3:D4) | 192,599 |
C23.67(C3:D4) = (C2xQ8).49D6 | φ: C3:D4/D6 → C2 ⊆ Aut C23 | 96 | | C2^3.67(C3:D4) | 192,602 |
C23.68(C3:D4) = (C2xC6).Q16 | φ: C3:D4/D6 → C2 ⊆ Aut C23 | 96 | | C2^3.68(C3:D4) | 192,603 |
C23.69(C3:D4) = D12.36D4 | φ: C3:D4/D6 → C2 ⊆ Aut C23 | 48 | | C2^3.69(C3:D4) | 192,605 |
C23.70(C3:D4) = Dic6.37D4 | φ: C3:D4/D6 → C2 ⊆ Aut C23 | 96 | | C2^3.70(C3:D4) | 192,609 |
C23.71(C3:D4) = C2xC23.7D6 | φ: C3:D4/D6 → C2 ⊆ Aut C23 | 48 | | C2^3.71(C3:D4) | 192,778 |
C23.72(C3:D4) = C4oD4:3Dic3 | φ: C3:D4/D6 → C2 ⊆ Aut C23 | 96 | | C2^3.72(C3:D4) | 192,791 |
C23.73(C3:D4) = C2xQ8:3Dic3 | φ: C3:D4/D6 → C2 ⊆ Aut C23 | 48 | | C2^3.73(C3:D4) | 192,794 |
C23.74(C3:D4) = C2xC23.23D6 | φ: C3:D4/D6 → C2 ⊆ Aut C23 | 96 | | C2^3.74(C3:D4) | 192,1355 |
C23.75(C3:D4) = C2xD4:D6 | φ: C3:D4/D6 → C2 ⊆ Aut C23 | 48 | | C2^3.75(C3:D4) | 192,1379 |
C23.76(C3:D4) = C2xQ8.14D6 | φ: C3:D4/D6 → C2 ⊆ Aut C23 | 96 | | C2^3.76(C3:D4) | 192,1382 |
C23.77(C3:D4) = C6.C4wrC2 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C23 | 48 | | C2^3.77(C3:D4) | 192,10 |
C23.78(C3:D4) = C4:Dic3:C4 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C23 | 48 | | C2^3.78(C3:D4) | 192,11 |
C23.79(C3:D4) = C12.8C42 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C23 | 48 | | C2^3.79(C3:D4) | 192,82 |
C23.80(C3:D4) = C2xC42:4S3 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C23 | 48 | | C2^3.80(C3:D4) | 192,486 |
C23.81(C3:D4) = C2xC23.6D6 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C23 | 48 | | C2^3.81(C3:D4) | 192,513 |
C23.82(C3:D4) = C4:C4.225D6 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C23 | 96 | | C2^3.82(C3:D4) | 192,523 |
C23.83(C3:D4) = C4oD12:C4 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C23 | 96 | | C2^3.83(C3:D4) | 192,525 |
C23.84(C3:D4) = (C2xC6).40D8 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C23 | 96 | | C2^3.84(C3:D4) | 192,526 |
C23.85(C3:D4) = C4:C4.228D6 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C23 | 96 | | C2^3.85(C3:D4) | 192,527 |
C23.86(C3:D4) = C4:C4.230D6 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C23 | 96 | | C2^3.86(C3:D4) | 192,529 |
C23.87(C3:D4) = C4:C4.231D6 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C23 | 96 | | C2^3.87(C3:D4) | 192,530 |
C23.88(C3:D4) = C24.73D6 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C23 | 96 | | C2^3.88(C3:D4) | 192,769 |
C23.89(C3:D4) = C24.74D6 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C23 | 96 | | C2^3.89(C3:D4) | 192,770 |
C23.90(C3:D4) = C24.76D6 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C23 | 96 | | C2^3.90(C3:D4) | 192,772 |
C23.91(C3:D4) = (C6xD4):6C4 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C23 | 48 | | C2^3.91(C3:D4) | 192,774 |
C23.92(C3:D4) = (C2xC6):8D8 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C23 | 48 | | C2^3.92(C3:D4) | 192,776 |
C23.93(C3:D4) = (C3xD4).31D4 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C23 | 48 | | C2^3.93(C3:D4) | 192,777 |
C23.94(C3:D4) = (C6xQ8):6C4 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C23 | 96 | | C2^3.94(C3:D4) | 192,784 |
C23.95(C3:D4) = (C3xQ8):13D4 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C23 | 96 | | C2^3.95(C3:D4) | 192,786 |
C23.96(C3:D4) = (C2xC6):8Q16 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C23 | 96 | | C2^3.96(C3:D4) | 192,787 |
C23.97(C3:D4) = C25.4S3 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C23 | 48 | | C2^3.97(C3:D4) | 192,806 |
C23.98(C3:D4) = C2xC23.28D6 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C23 | 96 | | C2^3.98(C3:D4) | 192,1348 |
C23.99(C3:D4) = C2xD12:6C22 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C23 | 48 | | C2^3.99(C3:D4) | 192,1352 |
C23.100(C3:D4) = C2xQ8.11D6 | φ: C3:D4/C2xC6 → C2 ⊆ Aut C23 | 96 | | C2^3.100(C3:D4) | 192,1367 |
C23.101(C3:D4) = C12.C42 | central extension (φ=1) | 192 | | C2^3.101(C3:D4) | 192,88 |
C23.102(C3:D4) = C2xC6.Q16 | central extension (φ=1) | 192 | | C2^3.102(C3:D4) | 192,521 |
C23.103(C3:D4) = C2xC12.Q8 | central extension (φ=1) | 192 | | C2^3.103(C3:D4) | 192,522 |
C23.104(C3:D4) = C2xC6.D8 | central extension (φ=1) | 96 | | C2^3.104(C3:D4) | 192,524 |
C23.105(C3:D4) = C2xC6.SD16 | central extension (φ=1) | 192 | | C2^3.105(C3:D4) | 192,528 |
C23.106(C3:D4) = C2xC6.C42 | central extension (φ=1) | 192 | | C2^3.106(C3:D4) | 192,767 |
C23.107(C3:D4) = C2xD4:Dic3 | central extension (φ=1) | 96 | | C2^3.107(C3:D4) | 192,773 |
C23.108(C3:D4) = C2xQ8:2Dic3 | central extension (φ=1) | 192 | | C2^3.108(C3:D4) | 192,783 |
C23.109(C3:D4) = C22xDic3:C4 | central extension (φ=1) | 192 | | C2^3.109(C3:D4) | 192,1342 |
C23.110(C3:D4) = C22xD6:C4 | central extension (φ=1) | 96 | | C2^3.110(C3:D4) | 192,1346 |
C23.111(C3:D4) = C22xD4:S3 | central extension (φ=1) | 96 | | C2^3.111(C3:D4) | 192,1351 |
C23.112(C3:D4) = C22xD4.S3 | central extension (φ=1) | 96 | | C2^3.112(C3:D4) | 192,1353 |
C23.113(C3:D4) = C22xQ8:2S3 | central extension (φ=1) | 96 | | C2^3.113(C3:D4) | 192,1366 |
C23.114(C3:D4) = C22xC3:Q16 | central extension (φ=1) | 192 | | C2^3.114(C3:D4) | 192,1368 |
C23.115(C3:D4) = C22xC6.D4 | central extension (φ=1) | 96 | | C2^3.115(C3:D4) | 192,1398 |